Explorando Iniciativas de Business Analytics na Literatura Contábil: todas as áreas contábeis são iguais?
DOI:
https://doi.org/10.14392/asaa.2024170211Palavras-chave:
Business Analytics, Sistemas de Informação Contábil, Áreas ContábeisResumo
Objetivos: O objetivo da nossa pesquisa é entender por que as práticas de Business Analytics (BA) são selecionadas e como elas são adotadas em várias áreas contábeis. Para tanto, nosso estudo mapeia e analisa as iniciativas de analytics documentadas na literatura no campo contábil, categorizando essas iniciativas por área contábil.
Método: Conduzimos uma Revisão Sistemática de Literatura, com base em publicações dos bancos de dados Web of Science e Scopus, bem como em periódicos proeminentes em Sistemas de Informação e Sistemas de Informação Contábil. Foi utilizado análise de conteúdo categórica com códigos baseados em teoria e dados, alinhados com os objetivos da pesquisa.
Resultados: Nossos resultados fornecem um mapeamento abrangente da literatura de Business Analytics na contabilidade, detalhando as dimensões - Domínio, Orientação e Técnica - por área contábil. Esse mapeamento fornece uma compreensão mais profunda da relação entre as características específicas de cada área contábil e o uso de Business Analytics. Além disso, propomos uma taxonomia com base nos propósitos de uso em cada área. Por fim, apresentamos uma agenda de pesquisa, resumindo as principais contribuições e oferecendo sugestões para pesquisas futuras.
Contribuições: Esta pesquisa contribui academicamente ao permitir uma comparação da adoção e uso do Business Analytics em diferentes áreas contábeis, destacando aquelas com maior maturidade em Business Analytics. Além disso, a taxonomia proposta ajuda a esclarecer e promover o alinhamento entre a disciplina contábil e as técnicas de analytics, reduzindo a confusão conceitual e prática. Esta pesquisa serve também como uma base para profissionais de contabilidade desenvolverem suas habilidades em iniciativas analíticas.
Downloads
Referências
Ahmad, F. (2019). A systematic review of the role of Big Data Analytics in reducing the influence of cognitive errors on the audit judgement. Revista de Contabilidad-Spanish Accounting Review, 22(2), 187-202. https://doi.org/10.6018/rcsar.382251
Al-Htaybat, K., & von Alberti-Alhtaybat, L. (2017). Big Data and corporate reporting: impacts and paradoxes. Accounting, Auditing & Accountability Journal, 30(4), 850-873. https://doi.org/10.1108/AAAJ-07-2015-2139
Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017a). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29-44. https://doi.org/10.1016/j.accinf.2017.03.003
Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017b). Big Data and analytics in the modern audit engagement: Research needs. Auditing: A Journal of Practice & Theory, 36(4), 1-27. https://doi.org/10.2308/ajpt-51684
Araújo, L., Behr, A., & Schiavi, G. S. (2023). Adoção de business analytics na contabilidade. Revista Contabilidade & Finanças, 34, e1771. https://doi.org/10.1590/1808-057x20231771.en
Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of business research, 96, 228-237. https://doi.org/10.1016/j.jbusres.2018.11.028
Bardin, L. 1977. Content Analysis – São Paulo. Edições 70, 2011(in portuguese)
Bhimani, A., & Willcocks, L. (2014). Digitisation,‘Big Data’and the transformation of
accounting information. Accounting and Business Research, 44(4), 469-490. https://doi.org/10.1080/00014788.2014.910051
Božič, K., & Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), 101578. https://doi.org/10.1016/j.jsis.2019.101578
Camm, J. D., Bowers, M.R. & Davenport, T.H. (2020, June 16). The Recession’s Impact on Analytics and Data Science. MIT Sloan Management Review. Recuperado em 03 de julho, 2020, de https://sloanreview.mit.edu/article/the-recessions-impact-on-analytics-and-data-science/
Cangemi, M. P. (2017). Addressing the C-Level Question: How Effectively are Assurance Functions Contributing and Using Automated Analytics?. EDPACS, 55(5), 1-12. https://doi.org/10.1080/07366981.2017.1324702
Cavalcanti, C. X., & Silva, A. R. L. D. (2020). Business analytics and sociomateriality: A study on the practice of revenue management in an airline company. BBR. Brazilian Business Review, 17(4), 419-438. https://doi.org/10.15728/bbr.2020.17.4.4
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188. https://doi.org/10.2307/41703503
Cheng, C., Sapkota, P., & Yurko, A. J. (2021). A case study of effective tax rates using data analytics. Issues in Accounting Education, 36(1), 65-89. https://doi.org/10.2308/ISSUES-19-060
Cockcroft, S., & Russell, M. (2018). Big data opportunities for accounting and finance practice and research. Australian Accounting Review, 28(3), 323-333. https://doi.org/10.1111/auar.12218
Coyne, E. M., Coyne, J. G., & Walker, K. B. (2018). Big Data information governance by accountants. International Journal of Accounting & Information Management, 26(1), 153-170. https://doi.org/10.1108/IJAIM-01-2017-0006
Davenport, T. H., Barth, P., & Bean, R. (2012). How'big data'is different. MIT Sloan Management Review.
Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Harvard Business Press.
Deloitte (2020). O futuro da área de finanças – uma visão a ser compartilhada. Recuperado em 03 de julho, 2020, de https://www2.deloitte.com/content/dam/Deloitte/br/Documents/finance/cfo/CFO-futuro-financas.pdf
Dzuranin, A. C., Jones, J. R., & Olvera, R. M. (2018). Infusing data analytics into the accounting curriculum: A framework and insights from faculty. Journal of Accounting Education, 43, 24-39. https://doi.org/10.1016/j.jaccedu.2018.03.004
Earley, C. E. (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493-500. https://doi.org/10.1016/j.bushor.2015.05.002
Elshandidy, T., Shrives, P. J., Bamber, M., & Abraham, S. (2018). Risk reporting: A review of the literature and implications for future research. Journal of Accounting Literature, 40, 54-82. https://doi.org/10.1016/j.acclit.2017.12.001
Gal, G., Singh, K., & Best, P. (2016). Interactive visual analysis of anomalous accounts payable transactions in SAP enterprise systems. Managerial Auditing Journal, 31(1), 35-63. https://doi.org/10.1108/MAJ-10-2014-1117
Gepp, A., Linnenluecke, M. K., O’Neill, T. J., & Smith, T. (2018). Big data techniques in auditing research and practice: Current trends and future opportunities. Journal of Accounting Literature, 40, 102-115. https://doi.org/10.1016/j.acclit.2017.05.003
Gerhardt, T. E., & Silveira, D. T. (2009). Métodos de pesquisa. Plageder.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130-141. https://doi.org/10.1016/j.dss.2014.05.013
Knudsen, D. R. (2020). Elusive boundaries, power relations, and knowledge production: A systematic review of the literature on digitalization in accounting. International Journal of Accounting Information Systems, 36, 100441. https://doi.org/10.1016/j.accinf.2019.100441
Lamboglia, R., Lavorato, D., Scornavacca, E., & Za, S. (2020). Exploring the relationship between audit and technology. A bibliometric analysis. Meditari Accountancy Research, 29(5), 1233-1260. https://doi.org/10.1108/MEDAR-03-2020-0836
Lee, J. H., & Park, S. C. (2005). Intelligent profitable customers segmentation system based on business intelligence tools. Expert systems with applications, 29(1), 145-152. https://doi.org/10.1016/j.eswa.2005.01.013
Medeiros, M. M., Maçada, A. C. G., & Hoppen, N. (2021). O papel da administração e análise de big data como habilitadoras da gestão do desempenho corporativo. Revista de Administração Mackenzie, 22(6), 1–32. doi:10.1590/1678-6971/eRAMD210063
MicroStrategy (2020). 2020 Global State of Enterprise Analytics: minding the data-drive gap. Virginia: MicroStrategy.
Milhomem, L. D. S., Sincorá, L. A., Oliveira, M. P. V. D., & Brandão, M. M. (2022). The Impact of Business Analytics on Collaborative Advantage: the mediating role of managing transaction costs. BBR. Brazilian Business Review, 19, 59-77. https://doi.org/10.15728/bbr.2022.19.1.4
Mustikarini, A. and Adhariani, D. (2021). In auditor we trust: 44 years of research on the auditor-client relationship and future research directions. Meditari Accountancy Research, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MEDAR-11-2020-1062.
Nielsen, S. (2018). Reflections on the applicability of business analytics for management accounting–and future perspectives for the accountant. Journal of Accounting & Organizational Change, 14(2), 167-187. https://doi.org/10.1108/JAOC-11-2014-0056
Phillips-Wren, G., Daly, M., & Burstein, F. (2021). Reconciling business intelligence, analytics and decision support systems: More data, deeper insight. Decision Support Systems, 146, 113560. https://doi.org/10.1016/j.dss.2021.113560
Rezaee, Z., Dorestani, A., & Aliabadi, S. (2018). Application of Time Series Analyses in Big Data: Practical, Research, and Education Implications. Journal of Emerging Technologies in Accounting, 15(1), 183-197. https://doi.org/10.2308/jeta-51967
Richins, G., Stapleton, A., Stratopoulos, T. C., & Wong, C. (2017). Big Data analytics: Opportunity or threat for the accounting profession?. Journal of Information Systems, 31(3), 63-79. https://doi.org/10.2308/isys-51805
Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37-58. https://doi.org/10.1016/j.accinf.2018.03.001
Rozario, A. M., & Issa, H. (2020). Risk-based data analytics in the government sector: A case study for a US county. Government Information Quarterly, 37(2), 101457. https://doi.org/10.1016/j.giq.2020.101457
Schneider, G. P., Dai, J., Janvrin, D. J., Ajayi, K., & Raschke, R. L. (2015). Infer, predict, and assure: Accounting opportunities in data analytics. Accounting Horizons, 29(3), 719-742. https://doi.org/10.2308/acch-51140
Singh, N., Lai, K. H., Vejvar, M., & Cheng, T. E. (2019). Data driven auditing: A predictive modeling approach to fraud detection and classification. Journal of Corporate Accounting & Finance, 30(3), 64-82. https://doi.org/10.1002/jcaf.22389
Spraakman, G., Sanchez-Rodriguez, C., & Tuck-Riggs, C. A. (2020). Data analytics by management accountants. Qualitative Research in Accounting & Management, 18(1), 127-147. https://doi.org/10.1108/QRAM-11-2019-0122
Tang, F., Norman, C. S., & Vendrzyk, V. P. (2017). Exploring perceptions of data analytics in the internal audit function. Behaviour & Information Technology, 36(11), 1125-1136. https://doi.org/10.1080/0144929X.2017.1355014
Tangen, S. (2005). Demystifying productivity and performance, International Journal of Productivity and Performance Management, 54(1), 34-46. https://doi.org/10.1108/17410400510571437
Trieu, V. H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111-124. https://doi.org/10.1016/j.dss.2016.09.019
Urbaczewski, A. & Keeling, K. B. (2019). Invited Paper: The Transition from MIS Departments to Analytics Departments. Journal of Information Systems Education, 30(4), 303-310.
Uyar, M. (2021). The role of business analytics in transforming management accounting information into cost performance. Ege Academic Review, 21(4), 373-389. https://doi.org/10.21121/eab.1015665
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639. https://doi.org/10.1016/j.ejor.2017.02.023
Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly, xiii-xxiii.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Leticia Silva Araujo, Ariel Behr, Carla Marcolin, Eusebio Scornavacca
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os direitos autorais para artigos publicados no ASAA Journal são do autor, com direitos de primeira publicação para a revista. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não comerciais. O ASAA Journal permitirá o uso dos trabalhos publicados para fins não comerciais, incluindo direito de enviar o trabalho para bases de dados de acesso público. Os artigos publicados são de total e exclusiva responsabilidade dos autores. Não há encargos para submissão/publicação ou taxas para processamento de artigos (Articles Processing Charge - APC).