Utilization of Artificial Intelligence in fiscal stress forecasting: evidence for brazilian municipalities

Authors

DOI:

https://doi.org/10.14392/asaa.2024170307

Keywords:

Governmental Financial Condition, Fiscal condition, Subnational Entities, Artificial Intelligence, Random Forest

Abstract

Objective: The study applied Trussel and Patrick’s (2018) model, along with factors from Groves et al. (1981) Groves and Valente (2003), to forecast fiscal stress in Minas Gerais municipalities from 2016 to 2020, considering the Brazilian context.

Method: The Random Forest (RF) model, a machine learning technique from Decision Trees family, was used to predict fiscal stress in municipalities in Minas Gerais, which the choice of this model was due to its recent success in prediction problems, which motivated its application in the present study.

Results: The model showed an overall average accuracy of 68.2%. After defining some cut-off points, it was possible to achieve up to 85% early precision. The model demonstrated greater effectiveness in predicting the occurrence of fiscal stress than in its absence. However, the results varied significantly between different periods analyzed. It is also noteworthy that the most important variables are related to the liquidity category, while organizational and environmental variable factors demonstrated low importance. Such results corroborate and contradict some authors, as well as exceed some articles.

Contributions: The article brings two innovations, namely the use of Artificial Intelligence (AI) in research on Governmental Financial Condition in Brazil and the prediction of fiscal stress in Brazilian municipalities.

Downloads

Download data is not yet available.

References

Aarsaether, N. (1990). Organizational and Spatial Determinants of Fiscal Stress: An Analysis of Norwegian Municipalities. Public Budgeting & Finance, 10(1), 55-66. https://doi.org/10.1111/1540-5850.00850 DOI: https://doi.org/10.1111/1540-5850.00850

Altman, E. I., Danovi, A., & Falini, A. (2013). Z-Score Models’ Application to Italian Companies Subject to Extraordinary Administration. Journal of Applied Finance (Formerly Financial Practice and Education), 23(1), 1–10. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2686750

Afonso, A., & Jalles, J. T. (2020). Sovereign indebtedness and financial and fiscal conditions. Applied Economics Letters, 27(19), 1611-1616. https://doi.org/10.1080/13504851.2019.1707758 DOI: https://doi.org/10.1080/13504851.2019.1707758

Antulov-Fantulin, N., Lagravinese, R., & Resce, G. (2021). Predicting bankruptcy of local government: A machine learning approach. Journal of Economic Behavior and Organization, 183, 681–699. https://doi.org/10.1016/j.jebo.2021.01.014 DOI: https://doi.org/10.1016/j.jebo.2021.01.014

Benito, B., Bastida, F., & Muñoz, M. J. (2010). Factores Explicativos de la Presión Fiscal Municipal: Explanatory Factors of the Municipal Fiscal Burden. Revista de Contabilidad-Spanish Accounting Review, 13(2), 239-283. https://doi.org/10.1016/S1138-4891(10)70018-2 DOI: https://doi.org/10.1016/S1138-4891(10)70018-2

Bisogno, M., Cuadrado-Ballesteros, B., Santis, S., & Citro, F. (2019). Budgetary solvency of Italian local governments: an assessment. International Journal of Public Sector Management, 32(2), 122–141. https://doi.org/10.1108/IJPSM-11-2017-0328 DOI: https://doi.org/10.1108/IJPSM-11-2017-0328

Bolognesi, B., Ribeiro, E., & Codato, A. (2023). Uma Nova Classificação Ideológica dos Partidos Políticos Brasileiros. Dados, 66(2). https://doi.org/10.1590/dados.2023.66.2.303 DOI: https://doi.org/10.1590/dados.2023.66.2.303

Bowman, W., & Calia, R. (1997). Evaluating Local Government Financial Health: Financial Indicators for Cook, DuPage, Kane, Lake, McHenry e Will Counties. Chicago: The Civic Federation.

Brasil (2022). Visão Integrada das Dívidas da União, dos Estados, do Distrito Federal e dos Municípios. https://www.tesourotransparente.gov.br/historias/visao-integrada-das-dividas-da-uniao-dos-estados-do-distrito-federal-e-dos-municipios

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324

Brien, S. T., Eger III, R. J., & Matkin, D. S. (2021). The timing of managerial responses to fiscal stress. Public Administration Review, 81(3), 414-427. https://doi.org/10.1111/puar.13359 DOI: https://doi.org/10.1111/puar.13359

Brown, K. W. (1993). The 10-point test of financial condition: Toward an easy-to-use assessment tool for smaller cities. Government Finance Review, 9, 1–21. https://localgovernment.extension.wisc.edu/files/2016/04/kenneth-brown-Ten-point-test.pdf

Chen, D. (2021). Risk Assessment of Government Debt Based on Machine Learning Algorithm. Complexity, 2021. https://doi.org/10.1155/2021/3686692 DOI: https://doi.org/10.1155/2021/3686692

Chung, I. H., & Williams, D. (2021). Local governments’ responses to the fiscal stress label: the case of New York. Local Government Studies, 47(5), 808–835. https://doi.org/10.1080/03003930.2020.1797693 DOI: https://doi.org/10.1080/03003930.2020.1797693

Clark, T. N. (1977). Fiscal Management of American Cities: Funds Flow Indicators. Journal of Accounting Research, 15, 54–94. https://doi.org/10.2307/2490632 DOI: https://doi.org/10.2307/2490632

Clark, T. N. (1994). Municipal fiscal strain: Indicators and causes. Government Finance Review, 10, 1–27. https://go.gale.com/ps/i.do?id=GALE%7CA16086840&sid=googleScholar&v=2.1&it=r&linkaccess=fulltext&issn=08837856&p=AONE&sw=w&casa_token=XC85Higz1-4AAAAA:ujKvciuvQw7yv8J_SIMZZ1SoCfcyNsjL0Lii7eKQ25qQ-E30222X2chQyYHfqqlzat4s6YjHvNpaLA

Cohen, S., Costanzo, A., & Manes-Rossi, F. (2017). Auditors and early signals of financial distress in local governments. Managerial Auditing Journal, 32(3), 234–250. https://doi.org/10.1108/MAJ-05-2016-1371 DOI: https://doi.org/10.1108/MAJ-05-2016-1371

Costa, C. C. D. M., Ferreira, M. A. M., Braga, M. J., & Abrantes, L. A. (2015). Fatores associados à eficiência na alocação de recursos públicos à luz do modelo de regressão quantílica. Revista de Administração Pública, 49(5), 1319-1347. https://doi.org/10.1590/0034-7612130868 DOI: https://doi.org/10.1590/0034-7612130868

Costa, F. M. D., & Leão, F. H. F. C. (2021). Gerenciamento de resultados e ciclo eleitoral em municípios brasileiros. Revista de Administração Pública, 55, 697-715. https://doi.org/10.1590/0034-761220200112 DOI: https://doi.org/10.1590/0034-761220200112

Cruvinel, D. P., & Lima, D. V. (2011). Adoção do regime de competência no setor público brasileiro sob a perspectiva das normas brasileiras e internacionais de contabilidade. Revista de Educação e Pesquisa em contabilidade, 5(3), 69-85. https://www.redalyc.org/pdf/4416/441642859005.pdf DOI: https://doi.org/10.17524/repec.v5i3.185

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random Forests. Ensemble Machine Learning, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5 DOI: https://doi.org/10.1007/978-1-4419-9326-7_5

Dantas Junior, A. F., Diniz, J. A., & Lima, S. C. (2019). A Influência Do Federalismo Fiscal Sobre O Estresse Fiscal Dos Municípios Brasileiros. Advances in Scientific and Applied Accounting, 12(3), 062–078. https://doi.org/10.14392/asaa.2019120304 DOI: https://doi.org/10.14392/ASAA.2019120304

García-Sánchez, I. M., Cuadrado-Ballesteros, B., Frías-Aceituno, J. V., & Mordan, N. (2012). A New Predictor of Local Financial Distress. International Journal of Public Administration, 35(11), 739–748. https://doi.org/10.1080/01900692.2012.679173 DOI: https://doi.org/10.1080/01900692.2012.679173

Groves, S. M., Godsey, W. M., & Shulman, M. A. (1981). Financial Indicators for Local Government. Public Budgeting & Finance, 1(2), 5–19. https://doi.org/10.1111/1540-5850.00511 DOI: https://doi.org/10.1111/1540-5850.00511

Groves, S. M., & Valente, M. G. (2003). Evaluating financial condition: A handbook for local government. 4. ed. revised by Karl Nollenberger. Washington: The international City/Country Management Association – ICMA.

Hendrick, R. (2004). Assessing and measuring the fiscal heath of local governments: Focus on Chicago suburban municipalities. Urban Affairs Review, 40(1), 78–114. https://doi.org/10.1177/1078087404268076 DOI: https://doi.org/10.1177/1078087404268076

Honadle, B. W. (2003). The states’ role in U.S. local government fiscal crises: A theoretical model and results of a national survey. International Journal of Public Administration, 26(13), 1431–1472. https://doi.org/10.1081/PAD-120024405 DOI: https://doi.org/10.1081/PAD-120024405

Iacuzzi, S. (2022). An appraisal of financial indicators for local government: a structured literature review. Journal of Public Budgeting, Accounting and Financial Management, 34(6), 69–94. https://doi.org/10.1108/JPBAFM-04-2021-0064 DOI: https://doi.org/10.1108/JPBAFM-04-2021-0064

Janitza, S., & Hornung, R. (2018). On the overestimation of random forest’s out-of-bag error. PloS one, 13(8), 1-31. https://doi.org/10.1371/journal.pone.0201904 DOI: https://doi.org/10.1371/journal.pone.0201904

Jarmulska, B. (2022). Random forest versus logit models: Which offers better early warning of fiscal stress?. Journal of Forecasting, 41(3), 455-490. https://doi.org/10.1002/for.2806 DOI: https://doi.org/10.1002/for.2806

Jucá, M. N., & Fishlow, A. (2021). Political uncertainty of impeachment upon corporate investment decisions. Borsa Istanbul Review, 21(2), 149–160. https://doi.org/10.1016/j.bir.2020.09.007 DOI: https://doi.org/10.1016/j.bir.2020.09.007

Kim, Y., & Warner, M. E. (2018). Geographies of local government stress after the great recession. Social Policy & Administration, 52(1), 365-386. https://doi.org/10.1111/spol.12307 DOI: https://doi.org/10.1111/spol.12307

Kloha, P., Weissert, C. S., & Kleine, R. (2005). Developing and Testing a Composite Model to Predict Local Fiscal Distress. Public Administration Review, 65(3), 313–323. https://doi.org/10.1111/j.1540-6210.2005.00456.x DOI: https://doi.org/10.1111/j.1540-6210.2005.00456.x

Lei de Responsabilidade Fiscal (LRF) (2000). “LEI COMPLEMENTAR Nº 101, DE 4 DE MAIO DE 2000”. Presidência da República. https://www.planalto.gov.br/ccivil_03/leis/lcp/lcp101.htm

Leiser, S., Wang, S., & Kargman, C. (2021). Perceptions of Local Government Fiscal Health and Fiscal Stress: Evidence from Quantile Regressions with Michigan Municipalities and Counties. State and Local Government Review, 53(4), 317-336. https://doi.org/10.1177/0160323X211038356 DOI: https://doi.org/10.1177/0160323X211038356

Lima, S. C. de, & Diniz, J. A. (2016). Contabilidade Pública - Análise Financeira Governamental (1ª ed.). Atlas.

Lin, T. C. W. (2019). Artificial Intelligence, Finance, and the Law. Fordham Law Review, 88(2), 531–551. https://ir.lawnet.fordham.edu/flr/vol88/iss2/6

Lobo, F. C., Ramos, P., & Lourenço, Ó. (2011). Causes of financial distress of Portuguese municipalities: empirical evidence. International Journal Monetary Economics and Finance, 4(4), 390–409. https://doi.org/10.1504/IJMEF.2011.043402 DOI: https://doi.org/10.1504/IJMEF.2011.043402

Magkonis, G., & Tsopanakis, A. (2016). The financial and fiscal stress interconnectedness: The case of G5 economies. International review of financial analysis, 46, 62-69. https://doi.org/10.1016/j.irfa.2016.03.019 DOI: https://doi.org/10.1016/j.irfa.2016.03.019

Maher, C. S., Hoang, T., & Hindery, A. (2020). Fiscal Responses to COVID-19: Evidence from Local Governments and Nonprofits. Public Administration Review, 80(4), 644–650. https://doi.org/10.1111/puar.13238 DOI: https://doi.org/10.1111/puar.13238

McDonald, B. D., & Larson, S. E. (2020). Implications of the coronavirus on sales tax revenue and local government fiscal health. Journal of Public and Nonprofit Affairs, 6(3), 377–400. https://doi.org/10.20899/JPNA.6.3.377-400 DOI: https://doi.org/10.20899/jpna.6.3.377-400

Miranda, W. L. L. C. de, Araújo, R. J. R. de, Leite, I. F., & Nobre, C. J. F. (2018). Avaliação da gestão fiscal nos estados brasileiros: Análise no quinquênio 2011 a 2015. Revista Mineira de Contabilidade, 19(1), 55–67. https://doi.org/10.21714/2446-9114rmc2018v19n1t05 DOI: https://doi.org/10.21714/2446-9114RMC2018v19n1t05

Navarro-Galera, A., Lara-Rubio, J., Buendía-Carrillo, D., & Rayo-Cantón, S. (2020). Analyzing political and systemic determinants of financial risk in local governments. Transylvanian Review of Administrative Sciences, 16(59), 104-123. http://dx.doi.org/10.24193/tras.59E.6 DOI: https://doi.org/10.24193/tras.59E.6

Oliveira, T. M. G., Dall’Asta, D., Zonatto, V. C. S., & Martins, V. A. (2021). Gestão Fiscal Municipal: uma análise sob a ótica do federalismo fiscal e dos ciclos políticos nos governos locais. Administração Pública E Gestão Social, 13(4). https://doi.org/10.21118/apgs.v13i4.11770 DOI: https://doi.org/10.21118/apgs.v13i4.11770

Preston, B. T. (1985). Rich Town, Poor Town: The Distribution of Rate-Borne Spending Levels in the Edwardian City. Transactions of the Institute of British Geographers, 10(1), 77–94. https://doi.org/10.2307/622251 DOI: https://doi.org/10.2307/622251

Psycharis, Y., Zoi, M., & Iliopoulou, S. (2016). Decentralization and local government fiscal autonomy: evidence from the Greek municipalities. Environment and Planning C: Government and Policy, 34(2), 262–280. https://doi.org/10.1177/0263774X15614153 DOI: https://doi.org/10.1177/0263774X15614153

Shi, Y. (2019). A response to fiscal stress: public sector employment reduction across states during a budget crisis. International Journal of Public Administration, 42(13), 1095-1105. https://doi.org/10.1080/01900692.2019.1575852 DOI: https://doi.org/10.1080/01900692.2019.1575852

Silva, M. C., Souza, F. J. V., Martins, J. D. M., & Câmara, R. P. B. (2020). Fatores explicativos da gestão fiscal em municípios brasileiros. Revista Contemporânea de Contabilidade, 17(42), 26–37. https://doi.org/10.5007/2175-8069.2020v17n42p26 DOI: https://doi.org/10.5007/2175-8069.2020v17n42p26

Stanley, D. T. (1980). Managing fiscal stress: the crises in the public sector. Chatham House Publishers.

Tang, C., Garreau, D., & von Luxburg, U. (2018). When do random forests fail?. Advances in neural information processing systems, 31. https://proceedings.neurips.cc/paper/2018/hash/204da255aea2cd4a75ace6018fad6b4d-Abstract.html

Tran, C., Kortt, M., & Dollery, B. (2019). Population size or population density? An empirical examination of scale economies in South Australian local government, 2015/16. Local Government Studies, 45(5), 632-653. https://doi.org/10.1080/03003930.2018.1501364 DOI: https://doi.org/10.1080/03003930.2018.1501364

Trussel, J. M., & Patrick, P. A. (2018). Assessing and ranking the financial risk of municipal governments. Journal of Applied Accounting Research, 19(1), 81–101. https://doi.org/10.1108/JAAR-05-2016-0051 DOI: https://doi.org/10.1108/JAAR-05-2016-0051

Turley, G., Di Medio, R., & McNena, S. (2020). A reassessment of local government’s financial position and performance: The case of Ireland. Administration, 68(2), 1–35. https://doi.org/10.2478/admin-2020-0009 DOI: https://doi.org/10.2478/admin-2020-0009

Vieira, M. A., De Ávila, L. A. C., & Lopes, J. D. V. S. (2021). Desenvolvimento socioeconômico e eficiência tributária: uma análise dos Municípios de Minas Gerais. Revista Universo Contábil, 16(3), 160-179. http://dx.doi.org/10.4270/ruc.2020320 DOI: https://doi.org/10.4270/ruc.2020320

Vieira, F. S. (2016). Crise econômica, austeridade fiscal e saúde: que lições podem ser aprendidas? Brasil: Instituto de Pesquisa Econômica Aplicada. http://repositorio.ipea.gov.br/bitstream/11058/7266/1/NT_n26_Disoc.pdf

Warner, M. E., Aldag, A. M., & Kim, Y. (2021). Pragmatic municipalism: US local government responses to fiscal stress. Public Administration Review, 81(3), 389-398. https://doi.org/10.1111/puar.13196 DOI: https://doi.org/10.1111/puar.13196

Zafra-Gómez, J. L., López-Hernández, A. M., & Hernández-Bastida, A. (2009). Developing an alert system for local governments in financial crisis. Public Money and Management, 29(3), 175–181. https://doi.org/10.1080/09540960902891731 DOI: https://doi.org/10.1080/09540960902891731

Zarkova, S., Kostov, D., Angelov, P., Pavlov, T., & Zahariev, A. (2023). Machine Learning Algorithm for Mid-Term Projection of the EU Member States’ Indebtedness. Risks, 11(4), 71. https://doi.org/10.3390/risks11040071 DOI: https://doi.org/10.3390/risks11040071

Published

2025-04-28

How to Cite

Garruti, D. V. T., Barboza, F. L. de M., & Diniz, J. A. (2025). Utilization of Artificial Intelligence in fiscal stress forecasting: evidence for brazilian municipalities. Advances in Scientific and Applied Accounting, 17(3), 152–165/166. https://doi.org/10.14392/asaa.2024170307

Issue

Section

ARTICLES