

Custo de Capital Regulatório das Distribuidoras Brasileiras de Energia Elétrica: Uma Proposição de Modelagem por Séries Temporais

Lucas Machado Coelho Silva¹, Laíse Ferraz Correia², Hudson Fernandes Amaral³, Lucélia Viviane Vaz Raad⁴

1,2,3,4 Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil

¹lucasmachadocs@hotmail.com ²laise@cefetmg.br

³hfamaral.cepead@gmail.com ⁴lucelia@cefetma.br

Editado por: Moacir Manoel Rodrigues Iunio

_ ...

Resumo

Objetivo: O objetivo deste artigo consistiu em propor o uso de modelos de séries temporais, em vez da média ou mediana utilizadas pela ANEEL, para projeção dos componentes com séries longas do WACC regulatório das distribuidoras brasileiras de energia elétrica.

Método: Para o cálculo dos componentes do WACC regulatório nos cinco primeiros CRTPs, assim como do WACC, utilizou-se a mesma base de dados da ANEEL, disponibilizada em seu sítio eletrônico na internet. Utilizaram-se modelos ARMA e AR para estimar os componentes de série longa USTB, S&P500, EMBI+ e CPI, obter o WACC proposto e, na sequência, comparar com o WACC da ANEEL nos cinco primeiros CRTPs.

Resultados: As estimativas por meio dos modelos de séries temporais foram diferentes daquelas calculadas pela ANEEL para os componentes tarifários nos cinco primeiros CRTPs. Verificou-se uma redução do WACC em alguns CRTPs e uma elevação em outros. Em média, os valores obtidos neste estudo são menores do que os utilizados pela ANEEL, mas as diferenças são muito pequenas. Os componentes tarifários estimados por séries temporais, assim como o WACC, oscilaram mais ao longo dos CRTPs em relação aos da ANEEL.

Contribuições: A contribuição deste estudo consistiu em ampliar a discussão sobre os métodos de apoio à decisão de investimento de empresas reguladas. Considera-se que os modelos propostos sejam mais adequados porque, possivelmente, as séries dos componentes do WACC regulatório sejam não estacionárias e apresentem estrutura de autocorrelação e, nesse caso, suas médias ou medianas não seriam estimativas apropriadas de valores futuros.

Palavras-chave: Custo de Capital. WACC Regulatório. Modelos de Séries Temporais.

Como Citar:

Silva, L. M. C., Correia, L. F., Amaral, H. F., & Raad, L. V. V. (2025). Custo de Capital Regulatório das Distribuidoras Brasileiras de Energia Elétrica: Uma Proposição de Modelagem por Séries Temporais. Advances in Scientific and Applied Accounting, 18(1), 048–061/062. https://doi.org/10.14392/asaa.2025180103

Submetido em: 01 de Junho de 2022 Revisões Requeridas em: 22 de Outubro de 2024

Aceito em: 14 de Abril de 2025

Introdução

Oprocesso da tomada de decisão de investimento nas empresas passa, essencialmente, pela avaliação das suas condições de risco e retorno. A escolha de investimentos que ofereçam a melhor relação risco-retorno e a seleção dos recursos para financiá-los são fatores fundamentais para o valor das empresas porque determinam o custo do capital. Essas decisões são especialmente relevantes em setores estratégicos para o desenvolvimento dos países, como o setor elétrico. Nas economias emergentes, em especial, o setor elétrico é um dos principais impulsionadores do desenvolvimento, podendo sinalizar aos agentes públicos direcionadores para políticas fiscais, financeiras e regulatórias prudentes para minimizar o impacto na redução do nível de investimento.

Em companhias reguladas, o custo de capital autorizado representa a taxa de retorno ajustada ao risco que os investidores recebem pelo capital alocado, sendo, por conseguinte, um indicador-chave para a decisão de investimentos, visto que reflete o custo de oportunidade dos financiadores. Essa taxa deverá atrair o capital dos investidores no próximo período regulatório e, para isso, deverá ser compatível com a de outros setores da economia (Rode & Fischbeck, 2019). Para as distribuidoras brasileiras de energia elétrica, a cada ciclo periódico de revisão tarifária (CRTP), a Agência Nacional de Energia Elétrica (ANEEL) define o Custo Médio Ponderado de Capital (WACC) regulatório a ser incluído na tarifa de energia nos quatro ou cinco anos seguintes nos ciclos entre 2003 e 2017; e no ano seguinte, a partir de 2020. O WACC regulatório engloba o custo de capital de terceiros e o custo de capital próprio – estimado por meio do Capital Asset Pricing Model (CAPM) de Sharpe (1964), Lintner (1965) e Mossin (1966).

A definição adequada do WACC regulatório é importante, como argumentam Rode e Fischbeck (2019) e Bueno et al. (2022), não apenas pela perspectiva teórica de precificação de ativos, mas também por razões práticas, isto é, para as empresas e a sociedade: pequenos erros ou vieses na definição do retorno autorizado poderiam, por exemplo, resultar em elevados valores a serem pagos pelos consumidores ou em baixos valores a serem recebidos pelos investidores, o que desestimularia o investimento. Nesse sentido, a escolha do método de cálculo do WACC regulatório teria um impacto tanto para investidores quanto consumidores. De um lado, uma taxa superestimada levaria a empresa a obter ganhos econômicos adicionais em detrimento da sociedade; de outro, uma taxa subestimada colocaria em risco a alocação de capital de investimento e a qualidade do serviço prestado, o que, em última instância, também prejudicaria os consumidores.

Nessa perspectiva, Aguilar et al. (2024) buscaram in

vestigar qual seria o WACC mais adequado para o setor elétrico do Equador: aquele que, entre os obtidos a partir de auatro modelos, não prejudicaria o investidor nem os consumidores. No primeiro, empregou-se a fórmula tradicional do WACC com taxa de juros e prêmio de risco de mercado dos Estados Unidos (EUA), o qual resultou em uma superestimação devido à dupla penalidade do risco-país e do prêmio de mercado dos EUA. No segundo, ajustou-se o prêmio de risco de mercado para considerar apenas o prêmio de risco específico do Equador. No terceiro, utilizou-se o Credit Swap (CDS) para obter o prêmio de risco-país, sendo excluído da taxa de juros nominal para evitar redundância. No quarto, combinaram-se diretamente a taxa de juros dos EUA com o CDS para calcular o prêmio de risco de mercado, refletindo com mais precisão as condições econômicas locais (de uma economia dolarizada). Os resultados mostraram que, dependendo do modelo adotado, o WACC variou de 12,63% (modelo 4) a 29,70% (modelo 1). Com isso, esses autores destacam a necessidade de adaptação das metodologias de países desenvolvidos para aplicação nos mercados emergentes, uma vez que as abordagens tradicionais superestimam o WACC. Corroborando essa hipótese, evidências empíricas sobre o custo de capital regulatório de distribuidoras do setor elétrico brasileiro, por exemplo, as de Bueno et al. (2022), para o triênio 2015-2017, sugeriram que o WACC estaria superestimado, proporcionando uma maior atratividade para os investimentos, porém, onerando os consumidores.

Andrade e Martins (2017) mostraram que existem dois grupos de consumidores no setor elétrico brasileiro: (i) os que pagam mais do que deveriam na tarifa de energia, gerando, assim, benefício aos investidores e prejuízo a si; e (ii) os que pagam menos do que deveriam, beneficiando-se em detrimento dos investidores. Dessa forma, como observam Rocha et al. (2006) e Carvalhaes et al. (2014), há possibilidades de melhorias na modelagem de apuração do custo de capital definido pela ANEEL, o qual deve permitir ao ente regulado recuperar pelo menos o seu custo de oportunidade de capital, incluindo os riscos do país, do negócio e o regulatório (além de outros riscos específicos aos projetos).

Em outros países latino-americanos, observa-se cenário similar, como o evidenciado em Bedoya-Cadavid et al. (2023), que propuseram um modelo multifatorial para explicar as variações de retorno no portfolio de investimentos do setor elétrico colombiano entre 2008 e 2022. A partir desse modelo, encontraram um menor custo de capital próprio, e, como consequência, um menor WACC (5,28%), se comparado ao aprovado pela Comissão Reguladora da Colômbia em 2019 (11,79%), indicando a superestimação do custo de capital regulado.

No Brasil, Kayo et al. (2020) ressaltam a disposição da ANEEL em discutir possíveis formas alternativas para estimar o WACC regulatório. Em 2018, por exemplo, na consulta pública referente ao custo de capital próprio, a ANEEL apresentou as seguintes opções: (i) manter a metodologia atual do CAPM, que utiliza os betas de companhias dos EUA em relação ao S&P500; (ii) manter o CAPM, mas com mudanças nos parâmetros, como a utilização de um ativo livre de risco brasileiro; ou (iii) mudar completamente a metodologia, por exemplo, aplicando um modelo multifatorial. Esses autores entenderam que a ANEEL (2018) parecia preferir a opção de manter o CAPM com mudanças substanciais nos parâmetros. Assim, propuseram modificações em relação aos procedimentos para o cálculo do custo de capital próprio dentro da estrutura do CAPM, os quais proporcionam maior estabilidade ao beta ao longo do tempo e, assim, poderiam melhorar a política atualmente utilizada para estimar o custo regulatório do capital próprio.

Como relatam Simões et al. (2021), a ANEEL revogou a previsão de atualização do WACC no ano de 2018, realizou a Consulta Pública nº 26/19 e, a partir das contribuições recebidas, aprovou uma nova versão do submódulo 2.4 (custo de capital) dos Procedimentos de Regulação Tarifária, estabeleceu a antecipação da revisão metodológica para 2019, com aplicação a partir de janeiro de 2020 (ANEEL, Nota Técnica nº 30, 2020).

Na Consulta Pública nº 26/19, foram adotados como norteadores das propostas apresentadas os seguintes princípios: i) estabilidade regulatória - entre dois parâmetros igualmente possíveis, optou-se por manter aquele que já vinha sendo aplicado anteriormente, caso possíveis alternativas não se mostrassem claramente melhores; ii) uso de parâmetros locais, quando possível e desde que não comprometessem a fundamentação teórica da modelagem; iii) simplificação - entre dois parâmetros igualmente possíveis, optou-se por aquele com cálculo mais simples; iv) uso de dados públicos, quando possível; v) padronização das janelas para um mesmo parâmetro entre os segmentos; e vi) períodos de referência mais próximos do tamanho dos ciclos de revisão, como forma de não utilizar janelas nem muito longas e nem muito curtas. Com as novas regras para cálculo do WACC (Resolução Normativa ANEEL nº 1.003, de 1° de fevereiro de 2022), a ANEEL passou a atualizar a taxa regulatória de retorno anualmente, por despacho da Superintendência de Gestão Tarifária.

Como resultado dessa Consulta, em resumo, destacam-se os seguintes aspectos: o modelo CAPM foi adaptado para utilização de título brasileiro como proxy da taxa de juros livre de risco – mas com a manutenção das variáveis do mercado norte-americano para cálculo do prêmio de risco e fator β – e inclusão de um prêmio de risco da atividade de distribuição; e as janelas das séries temporais utilizadas sofreram alterações. Os resultados dessa Consulta revelaram ainda uma falta de consenso dos stakeholders envolvidos quanto aos parâmetros aplica-

dos nos cálculos do WACC e do CAPM (ANEEL, 2020). Assim, como concluem Simões et al. (2021), a agência regulatória pode se beneficiar das evidências documentadas em estudos acadêmicos com foco nesse tema.

Além das novas regras para cálculo do WACC (ANEEL, 2020), nos cinco primeiros CRTPs, implementados entre 2003 e 2017, a ANEEL realizou diversas modificações na metodologia de cálculo dos componentes do WACC das distribuidoras brasileiras de energia elétrica. Ela utiliza a média aritmética simples ou a mediana dos dados históricos (com janelas de tempo distintas, a depender do componente tarifário) e considera que o resultado encontrado por essas estatísticas representa a melhor estimativa futura para a variável. Todavia, deve-se considerar que a média aritmética e a mediana de séries históricas estão definidas apenas nos casos em que o processo gerador de dados é estacionário. Caso as séries temporais não sejam estacionárias, o uso dessas estatísticas para projecão seria inadequado (Greene, 2003).

Considerando esse contexto, o objetivo deste artigo consiste em propor que as projeções dos componentes do WACC regulatório com séries longas sejam feitas por meio de modelos de séries temporais, em vez da média ou mediana. Considera-se que esses modelos sejam mais adequados pois apresentam uma análise mais aprofundada do comportamento da série temporal; e, no caso de não estacionariedade gerada por raiz unitária ou por tendência determinística, é possível realizar a sua correção para obter previsões com boas características estatísticas como consistência e suficiência.

O Emerging Markets Bond Index Plus (EMBI+) – calculado pelo banco JP Morgan, e utilizado pela ANEEL para representar o risco-país – é um exemplo de série que varia de forma importante ao longo do tempo: para o Brasil, atingiu valores superiores a 2.000 pontos-base por volta do ano 2002; e oscilou de 250 a 450 pontos nos últimos 14 anos. Utilizar a média ou mediana de séries históricas longas faz com que sejam incluídas informações de conjunturas diferentes no cálculo do WACC regulatório, as quais não são representadas pelas medidas de tendência central.

A contribuição deste estudo consiste, portanto, em ampliar a discussão sobre os métodos para uma definição mais adequada do WACC regulatório das distribuidoras brasileiras de energia elétrica.

2 Custo de capital de empresas reguladas

Para que haja equilíbrio econômico entre os prestadores de serviços regulados e a sociedade, os governos atuam por meio da regulação. Diversos modelos são utilizados nesse sentido, entre eles, o Price Cap (PC) – proposto por Littlechild (1983) para regular os preços e os lucros do monopólio inglês de telecomunicações. Segundo

Camacho e Menezes (2010), o PC é um mecanismo ex-ante para determinar os preços. Como a tarifa de energia permanece fixa por um período, a companhia tem o incentivo de reduzir seus custos operacionais para obter um lucro maior. Entretanto, como os reguladores não têm como determinar os preços para a vida útil dos ativos (pois eles têm vida longa), a regulação de preços ocorre, em média, a cada quatro ou cinco anos. Esse foi o regime adotado pela ANEEL para regular o setor de energia elétrica no Brasil.

Os órgãos reguladores dos países definem a taxa de retorno ajustada ao risco dos investidores (custo de capital). A Federal Energy Regulatory Commission (reguladora norte-americana), por exemplo, propôs o uso do CAPM como principal medida de risco (Bower et al., 1984). Com enfoque similar, desde 2003, a ANEEL realizou diversos CRTPs em que a metodologia utilizada para calcular o custo de capital próprio das distribuidoras de energia foi o CAPM. Na última alteração metodológica, implementada em 2020, manteve-se esse modelo (com adaptações).

Nessa perspectiva, Haug e Wieshammer (2019) relatam que as redes de eletricidade e gás na Europa geralmente operam sob regimes de regulamentação de incentivos, nos quais, no início de cada período regulatório, as autoridades reguladoras definem o nível autorizado de receitas, incluindo o custo de capital próprio. Para tanto, adotam uniformemente o CAPM, que produz taxas consideradas muito baixas pelas autoridades europeias.

Nesse sentido, Roll e Ross (1983) encontraram evidências de que o CAPM subestima o custo de capital próprio de empresas de utilidade pública, se comparado ao da Arbitrage Pricing Theory - APT. Savoia et al. (2019), ao avaliar se o modelo de custo de capital implícito (ICC) é melhor do que o CAPM na previsão da taxa de retorno para concessionárias brasileiras do setor de infraestrutura, também verificaram que o CAPM tende a subestimar o custo do capital próprio. Ao contrário, as evidências de Bower et al. (1984) mostraram que o CAPM superestima o custo de capital próprio de concessionárias de eletricidade e gás negociadas em bolsas norteamericanas, se comparado ao da APT de Ross (1976); e as de Rode e Fischbeck (2019) que sugeriram taxas de retorno de concessionárias de energia elétrica inconsistentes com o CAPM utilizado pelos reguladores spread crescente sobre a taxa de retorno livre de risco ao longo do período estudado.

Os métodos para a estimação do custo de capital de diversas indústrias reguladas no Brasil – telecomunicações, eletricidade, gás e transporte ferroviário – foram discutidos em Camacho (2004). Esse autor apontou duas definições essenciais nesse processo: i) do mercado de referência a ser utilizado para a estimação dos parâmetros dos

modelos, o que, por sua vez, depende do regime regulatório adotado pelo setor; e ii) do modelo financeiro a ser utilizado para se estimar o custo de capital. Camacho (2004) aponta o CAPM e o WACC como modelos mais vantajosos e de uso predominante, se comparados com a APT e o modelo de dividendos descontados de Gordon e Shapiro (1956). Por fim, discute as escolhas a serem feitas nesses modelos como, por exemplo, a definição de janelas históricas para o uso da média ou mediana.

Posteriormente, Camacho et al. (2006), assim como Coutinho e Oliveira (2002), recomendaram o uso do CAPM global ajustado ao mercado brasileiro (com o S&P500 representando a carteira de mercado) e, contrariamente à regulação vigente à época, a adoção da totalidade do risco-país (EMBI+), em vez do índice parcial adotado pela ANEEL. Entretanto, com esse enfoque, Camacho et al. (2006) consideraram desnecessário adicionar o prêmio de risco cambial. Ou seja, para além do risco sistêmico, em evidências empíricas concernentes ao custo de capital próprio de companhias de mercados emergentes, outras fontes de risco, por exemplo o riscopaís, são adicionadas à equação do CAPM (Assaf Neto et al., 2008; Pereiro, 2002).

As metodologias de estimação do custo de capital discutidas são derivadas da teoria de média-variância de Markowitz (1952), que introduziu o argumento do relacionamento entre risco e retorno. Como uma extensão desse modelo, Sharpe (1964), Lintner (1965) e Mossin (1966) desenvolveram o CAPM, que ainda é, predominantemente, utilizado para estimação do custo do capital próprio de entes regulados. O CAPM, representado pela equação 1, define o retorno esperado de um ativo – $E(R_i)$ – como uma função linear e positiva do risco sistêmico (β_i).

$$E(R_{\cdot \cdot}) = R_{\cdot \cdot} + \beta_{\cdot \cdot} (E(R_{\cdot \cdot \cdot}) - R_{\cdot \cdot})$$
 (1)

O procedimento padrão para estimar o beta de um ativo consiste em regredir o seu excesso de retorno (histórico) em relação ao retorno do ativo livre de risco $(E(R_{ii})-R_{j})$ sobre o prêmio pelo risco da carteira de mercado $(E(R_{in})-R_{j})$, conforme equação 2.

$$E(R_{i,i})-R_{i}=\alpha_{i}+\beta_{i}\left(E(R_{i,i})-R_{i}\right)+\varepsilon_{i,i}$$
(2)

Por meio desse procedimento, encontra-se o beta alavancado (β_l) , ou seja, influenciado pela estrutura de capital da empresa. Utilizando a equação de Hamada (1972), obtém-se o beta desalavancado (β_u) , que representa apenas o risco do negócio, sem o efeito da dívida, sendo expresso pela equação 3.

$$\beta_u = \frac{\beta_l}{(1 + (1 - t)(D/E))}$$
 (3)

Kayo et al. (2020) propuseram uma nova torma de

estimar o risco sistêmico do setor brasileiro de distribuição de energia para fins de cálculo do WACC regulatório. Dentro da estrutura CAPM, propõem modificações nos procedimentos da ANEEL quanto à estimação do custo de capital próprio, quais sejam: uso de uma empresa brasileira "pura" como ativo de risco, em vez de um portfólio de empresas de energia dos EUA; uso do conceito de CAPM global, em vez do CAPM local - como também fora sugerido por Rocha et al. (2006) e Assaf Neto et al. (2008); e aumento na duração da janela de estimativa de 5 para 11 anos. Os autores argumentam que sua proposta se baseia em evidências de que essa combinação de parâmetros produz um beta mais estável ao longo do tempo, além de gerar tarifas de energia mais justas para o consumidor final e segurança institucional para os investidores.

De forma a financiar novos projetos de investimento, as empresas podem também tomar recursos emprestados no mercado financeiro. Assaf Neto et al. (2008) argumentam que, com as taxas de juros do mercado brasileiro, dificilmente uma empresa seria capaz de agregar valor econômico. Eles sugerem, assim, que o custo do capital de terceiros seja formado pela taxa do mercado norteamericano, acrescida do prêmio pelo risco-país, líquido do benefício fiscal. Similarmente, no cálculo desse custo, nos cinco primeiros CRTPs, a ANEEL partiu da taxa de retorno do ativo livre de risco ($R_{\rm p}$) e adicionou os prêmios de risco de crédito ($R_{\rm c}$) e risco-país ($R_{\rm b}$), conforme a equação 4.

$$R_{a} = R_{t} + R_{a} + R_{b} \tag{4}$$

A combinação dos custos de capital próprio e de terceiros das empresas, WACC, é obtida mediante a equação 5, em que: W_i é o peso da participação da fonte de capital de longo prazo na estrutura de financiamento; e K_i representa o custo de cada fonte de capital. (Ross et al., 2013).

$$WACC = \sum_{j=1}^{n} W_j \times K_j \tag{5}$$

Em uma análise da metodologia de cálculo do WACC regulatório utilizada pela ANEEL, Perroni (2016) sugeriu as seguintes alterações: (i) uso de uma janela temporal de 15 anos para estimar o retorno do ativo livre de risco; (ii) uso de uma janela temporal de 10 anos para estimar os betas, em vez de 5 anos; ou (iii) padronização das janelas temporais em 20 anos para os componentes taxa de juros livre de risco, beta, parâmetro de risco de crédito e prêmio de risco-país. Além disso, propôs a manutenção

dos pressupostos: uso do WACC com o CAPM; e desconsideração dos riscos cambial e regulatório.

Lanziotti e Garcia (2018), por sua vez, buscaram demonstrar que o WACC regulatório fixado pela ANEEL para as empresas de transmissão de energia no Brasil está abaixo dos reais custos de capital próprio e de terceiros. Esses autores utilizaram dados da Companhia Estadual de Geração e Transmissão de Energia Elétrica e os mesmos parâmetros e metodologias de cálculo da ANEEL (modelos CAPM e WACC). Os autores encontraram um WACC real de 14,32%, superior aos 6,64% da ANEEL. Ou seja, que os custos estimados pela ANEEL estariam aquém dos reais custos suportados pela companhia analisada.

Já Simões et al. (2021), em uma perspectiva críticoanalítica, buscaram examinar a abordagem metodológica da ANEEL para calcular o WACC, sugerindo possíveis aprimoramentos em futuras revisões tarifárias, entre os quais: i) reconsiderar a amostra de empresas de energia elétrica dos EUA envolvidas no cálculo do fator β, pois ela não reflete a situação do mercado brasileiro de transmissão de energia; ii) considerar opções de simplificação no cálculo do fator β do CAPM; iii) excluir da amostra as empresas com dados ausentes ao determinar os pesos das empresas norte-americanas no cálculo do fator β desalavancado; iv) utilizar base teórica para definir os períodos das séries de dados dos parâmetros usados no cálculo do WACC; e v) calcular os custos de patrimônio e dívida com base nos dados decorrentes do mesmo período, em vez de defasados.

Tendo essa discussão em vista, neste estudo, propõese uma alteração no método de obtenção do WACC regulatório da ANEEL, o qual será descrito a seguir.

3 Procedimentos metodológicos

3.1 Dados e variáveis

De forma a comparar os resultados obtidos nesta análise com os da ANEEL, optou-se por trabalhar com a mesma base de dados empregada por essa agência no cálculo do WACC regulatório nos cinco primeiros CRTPs (2003 a 2017) – disponibilizada em seu sítio eletrônico na internet. As periodicidades das variáveis utilizadas são apresentadas na Tabela 1. É importante ressaltar que todas as variáveis, independentemente da frequência na qual os dados foram coletados (diária ou mensal), são apresentadas em base anual (taxa equivalente).

Tabela 1
Periodicidade das séries utilizadas pela ANEEL no cálculo dos componentes tarifários

CRTP	Referência	Período	Duração (anos)
Série histórica	UST10	out/1984 -	33
Serie msiorica	03110	set/2017	
1°		mar/1995 -	7
'		jun/2002	,
00		mar/1995 -	1.1
2°		jun/2006	11
		jan/1995 -	
3°		dez/2010	16
		out/1984 -	
4°		set/2014	30
		out/1987 -	
5°		set/2017	30
Série histórica	S&P500	out/1984 -	33
		set/2017	
1°		1926 - 2000	74
2°		1928 - 2006	78
3°		1928 - 2010	82
40		out/1984 -	
4°		set/2014	30
5°		out/1987 -	30
5		set/2017	30
Série histórica	EMBI+	abr/1994 -	24
Serie historica	EI/(DI+	jul/2018	24
1°		abr/1994 -	8
1		ago/2002	0
2°		abr/1994 -	10
2*		jun/2006	12
		jan/2000 -	
3°		dez/2010	11
		out/1999 -	
4°		set/2014	15
		out/2003 -	
5°		set/2017	14
		jan/1948 -	
Série histórica	CPI	jun/2018	70
		fev/1995 -	
1°		dez/2002	12
		jan/1995 -	
2°		dez/2006	16
3°		jan/1995 -	20
		dez/2010	
4°		jan/1995 -	24
•		dez/2014	= :
5°		set/2003 -	14
ŭ		dez/2017	

Fonte: Elaborada pelos autores.

Para o cálculo do WACC regulatório, a ANEEL utilizou as seguintes variáveis:

- i) UST10 taxa de retorno do título do tesouro norteamericano com vencimento em dez anos (média aritmética a partir de diferentes janelas temporais).
- ii) S&P500 taxa de retorno do índice Standard and Poor's 500 (média aritmética).

No cálculo das médias aritméticas do UST10 e S&P500, houve uma tendência à padronização do tamanho da série temporal (30 anos) nos dois últimos CRTPs.

iii) Beta – para obter essa variável, a ANEEL: calcula os betas alavancados de companhias norte-americanas (benchmark); efetua a sua desalavancagem, conforme o modelo de Hamada (1972); e realiza a realavancagem a partir da estrutura de capital das empresas brasileiras. Para calcular o beta, a ANEEL padronizou a janela temporal de cinco anos a partir do segundo CRTP.

- iv) EMBI+ indicador de risco-país para o Brasil.
- v) CPI taxa de inflação norte-americana calculada com base em doze meses passados (anual).
- vi) Rating de crédito global parâmetro de risco de crédito das distribuidoras de energia elétrica atribuídos pela Moody's.

Na Tabela 2 são apresentados os dados dos componentes utilizados, da proporção de cada fonte de recursos na estrutura de capital, assim como do WACC regulatório adotado pela ANEEL nos cinco primeiros CRTPs. Devido aos movimentos de fusões, aquisições e incorporações das companhias norte-americanas, a ANEEL avaliava, em cada CRTP, as companhias a serem utilizadas como benchmark para o cálculo do beta. Com isso, tornouse inviável regredir os retornos de um único grupo de companhias norte-americanas sobre o retorno do S&P500. Por essa razão, esse componente não pode ser obtido mediante os modelos de séries temporais aqui propostos.

Tabela 2

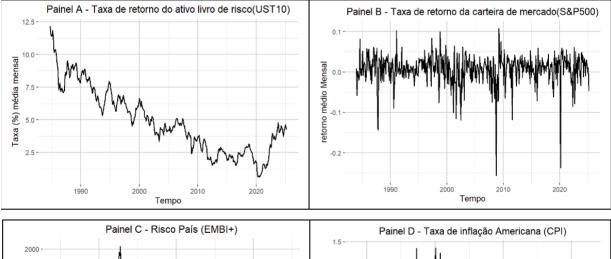
Composição do WACC regulatório adotado pela ANEEL nos cinco primeiros CRTPs

Custo do Capital Próprio Nominal (R\$) 17,46% 15,82% 13,43% 13,58% 11,65% Custo do Capital Próprio Real (R\$) 14,71% 12,88% 10,72% 10,90% 9,57% Prêmio de Risco de Mercado 7,76% 6,09% 5,82% 7,56% 6,58%	
Próprio Real (R\$) 14,71% 12,88% 10,72% 10,90% 9,57% Prêmio de Risco de 7,76% 6,09% 5,82% 7,56% 6,58% Mercado 7,76% 6,09% 5,82% 7,56% 6,58%	5%
Mercado /,/6% 6,09% 5,82% /,56% 6,58%	′%
T D	3%
Taxa de Retorno do 6,01% 5,32% 4,87% 5,64% 4,94% Aivo Livre de Risco Taxa de Retorno	%
da Carteira de 13,77% 11,41% 10,69% 13,20% 11,529 Mercado	2%
Beta Final 0,69 0,773 0,741 0,703 0,640	40
Beta Alavancado 0,26 0,555 0,741 0,703 0,640	40
Beta 0,15 0,295 0,410 0,432 0,393	93
IRPJ + CSLL 34% 34% 34% 34% 34%	%
Ajuste do Beta 0,42 0,21 0,00 0,00 0,00 (Risco Regulatório)	0
Prêmio de Risco 4,08% 4,01% 4,25% 2,62% 2,50%)%
Prêmio de Risco 2,00% 1,78% 0,00% 0,00% 0,00%)%
Taxa de Inflação 2,40% 2,60% 2,45% 2,41% 1,90%)%
Custo do Capital de Terceiros 15,76% 14,07% 11,26% 11,63% 11,889 _Nominal (R\$) ,	8%
Custo do Capital 8,61% 7,38% 5,68% 5,94% 6,47% de Terceiros Real (R\$)	7%
Taxa Livre de Risco 6,01% 5,32% 4,87% 5,64% 4,94%	%
Prêmio de Risco Brasil 4,08% 4,01% 4,25% 2,62% 2,50%)%
Risco de Crédito 3,67% 2,96% 2,14% 3,37% 4,44%	1%
Prêmio de Risco 2,00% 1,78% 0,00% 0,00% 0,00%)%
Estrutura de Capital	
Proporção de Capital 50,00% 42,84% 45,00% 51,24% 51,24%	4%
Proporção de 50,00% 57,16% 55,00% 48,76% 48,76% Capital deTerceiros	6%
WACC Nominal 16,61% 14,82% 12,24% 12,63% 11,769 (R\$)	5%
WACC Real (R\$) 11,66% 9,74% 7,94% 8,48% 8,06%	%

Fonte: Elaborada pelos autores.

3.2 Método de análise dos dados

Os valores do WACC regulatório da ANEEL foram comparados aos valores obtidos neste estudo após a previsão, por meio de modelos de séries temporais (estimados com 5% de significância), dos componentes tarifários UST10, S&P 500, EMBI+ e CPI com os dados das séries compreendendo períodos ent_{re} 1984 e 2023 (Nota Técnica nº 55/2024-STR/ANEEL, 2024). Nas previsões, utilizaram-se modelos univariados de séries temporais pelo método de Box et al. (2015), o que consistiu em: i) testar a estacionariedade das séries; ii) transformar as séries com comportamento não estacionário; iii) projetar esses componentes tarifários; iv) recalcular o WACC regulatório dos cinco primeiros CRcse os valores das variáveis projetados; e v) comparar o WACC regulatório proposto com o da ANEEL nos cinco primeiros CRTPs.


Avaliou-se a estacionariedade das séries mediante os três métodos sugeridos por Gujarati e Porter (2011), que são: i) análise gráfica; ii) teste de correlograma; e iii) teste de raiz unitária. A presença de raiz unitária foi testada por meio dos testes: ADF de Dickey e Fuller (1979), PP de Phillips e Perron (1988), e KPSS de Kwiatkowski et al. (1992). Nos testes ADF e PP, a hipótese nula considera a existência de

raiz unitária (não estacionariedade); já no teste KPSS, a hipótese nula considera ausência de raiz unitária (estacionariedade).

4 Análise dos Resultados

4.1 Análise gráfica

A Figura 1 apresenta as séries do UST10 (Painel A), S&P500 (Painel B), EMBI+ (Painel C) e CPI (Painel D) no período de 1984 a 2023. No painel A, observa-se uma tendência de queda dos retornos do UST10 (indícios de não estacionariedade), que saiu do patamar de 12% a.a. para 2% a.a. No Painel B, verifica-se que a série do S&P500 não apresenta tendência definida. No Painel C, verifica-se que a série do EMBI+: (i) atingiu um pico de 2.436 pontos em 2002; (ii) caiu para 500 pontos em 2004; (iii) oscilou de 150 para 600 pontos em 2008; e (iv) caiu para o nível de 300 pontos após esse período. A variabilidade do EMBI+ foi maior no período 1995 a 2005, comparativamente ao período 2005 a 2018, o que sugere a não estacionariedade. No Painel D, observase que a série do índice CPI não apresentou uma tendência definida, o que sugere um comportamento estacionário. A inflação média foi de 3,52% a.a., mediana de 2,86% a.a. e máxima de 14% a.a. (década de 1980).

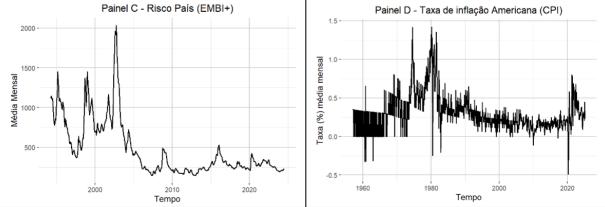
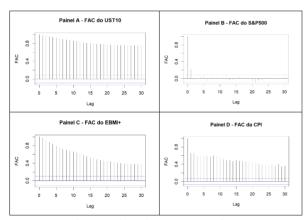



Figura 1. Séries temporais dos componentes tarifários UST10, S&P500, EMBI+ e CPI Fonte: Elaborada pelos autores.

4.2 Análise da função de autocorrelação

Na Figura 2, Painel A, apresenta-se a função de autocorrelação da série UST10. Observa-se que o seu decaimento é extremamente lento, ou seja, os choques sofridos pela série não se dissipam no tempo. Processos com essa característica são, em geral, não estacionários. No Painel B, a função de autocorrelação da série do S&P500 mostra um padrão de decaimento exponencial, o que é um indício de estacionariedade. No Painel C, verifica-se que a função de autocorrelação da série do EMBI+ exibe um comportamento compatível com o de processos não estacionários. No Painel D, constata-se que a função de autocorrelação do índice CPI também exibe comportamento de um processo não estacionário.

A existência de tendência determinística induz na função de autocorrelação um comportamento muito parecido com o de séries que apresentam raízes unitárias. Nesse caso, a transformação por primeira diferença não é o procedimento mais adequado para resolver o problema da não estacionariedade (Hamilton, 1994). Sendo assim, é necessário testar se o comportamento de não estacionariedade indicado pelas funções de autocorrelação é confirmado pelos testes de raízes unitárias.

Figura 2. Funções de autocorrelação dos componentes tarifários UST10, S&P500, EMBI+ e CPI Fonte: Elaborada pelos autores.

4.3 Testes de raiz unitária

Para testar se as séries financeiras analisadas apresentam raiz unitária, foram realizados os testes ADF, PP e KPSS em três modalidades: i) sem constante e tendência; ii) com constante e sem tendência; e iii) com constante e tendência.

4.3.1 Teste ADF

Na Tabela 3, apresentam-se os resultados do teste ADF para as séries UST10, S&P500, EMBI+ e CPI. A seleção do número de lags do teste, implementado por meio do comando adf.test do pacote estatístico R, foi feita pelo Critério de Informação de Akaike (AIC).

Para a série do UST10, os p-valores são menores ou iguais a 5% na maioria dos casos. Quando o teste é realizado com constante e sem tendência, os p-valores são elevados, chegando a 24%. A Figura dessa série (ver Painel A da Figura 1) havia sugerido a existência de uma tendência negativamente inclinada. Nesses casos, o resultado mais apropriado do teste ADF é aquele realizado com constante e tendência, em que se rejeita a hipótese nula de raiz unitária. A não estacionariedade indicada pela função de autocorrelação deve-se, possivelmente, à presença de tendência determinística na série. Para o S&P500, os p-valores estão em torno de 1% nos três tipos de testes e, portanto, rejeita-se a hipótese nula de raiz unitária. A série é estacionária, conforme sugerido também pela Figura da função de autocorrelação (ver Painel B da Figura 2). Para o EMBI+, os testes: i) com constante e sem tendência; e ii) com constante e tendência indicamcé possível afirmar que a série apresente uma tendência clara. Sensoy et al. (2017), por exemplo, analisaram a série brasileira do EMBI+ e rejeitaram a hipótese nula de raiz unitária. Por fim, para a série do índice CPI, os p-valores associados à maioria dos testes permitem a rejeição da hipótese nula de raiz unitária com 5% de significância.

Tabela 3
Teste ADF para os componentes tarifários UST10, S&P500, EMBI+ e CPI

este AL	r para	os componer	ites farit	arios US	110, 3&P30	J, EMBI+	e CPI	
				UST1	0			
Sem		sem Com		sem Com		om	com	
constante,		tendência			tendência	constante,		tendência
Lag	ADF	p-valor	Lag	ADF	p-valor	Lag	ADF	p-valor
0,00	-2,89	0,01	0,00	-2,56 -2,24	0,10	0,00	-4,48	0,01
1,00	-2,22	0,03	1,00	-2,24	0,23	1,00	-5,05	0,01
2,00	-2,48 -2,30	0,01 0,02	2,00 3,00	-2,30 -2,22	0,21 0,24	2,00 3,00	-4,69 -4,95	0,01
4,00	-2,30	0.02	4.00	-2,22	0,24	4,00	-5,32	0,01
5,00	-2,65	0,01	5,00	-2,57	ŏ,ió	5,00	-5,53	0,01
				S&P50	00			
Se		sem		om	sem		om	com tendêncio
const		tendência		tante,	tendência		constante,	
Lag	ADF	p-valor	Lag	ADF	p-valor	Lag	ADF	p-valor
0,00	-3,50	0,00	0,00	-4,06	0,01	0,00	-4,06	0,01
1,00	-3,40	0,00	1,00	-3,89	0,01	1,00	-3,90	0,01
2,00	-3,50	0,00	2,00	-4,04	0,01	2,00	-4,04	0,01
3,00	-4,10	0,00	3,00	-4,78	0,01	3,00	-4,77	0,01
4,00 5,00	-4,10 -4,20	0,00 0.00	4,00 5,00	-4,78 -4.95	0,01 0,01	4,00 5,00	-4,77 -4.94	0,01
0,00	.,20	0,00	0,00	EMBI		0,00	.,,,	0,0 .
Se	em	sem	C	om	sem	Com		com
const	ante,	tendência	constante,		tendência	constante,		tendênci
Lag	ADF	p-valor	Lag	ADF	p-valor	Lag	ADF	p-valor
0,00	-2,60	0,01	0,00	-2,92	0,05	0,00	-3,07	0,13
1,00	-2.57	0.01	1.00	-2.90	0.05	1.00	-3.07	0,13
2,00	-2.08	0,04	2,00	-2,18 -2,34	0,25 0,19	2,00	-2,19 -2,39	0,50
3,00	-2,17	0,03	3,00	-2,34	0,19	3,00	-2,39	0,41
4,00	-2,10	0,04	4,00	-2,23	0,23	4,00	-2,27	0,46
5,00	-2,10	0,04	5,00	-2,23	0,23	5,00	-2,27	0,46
6,00 7,00	-2,08 -2,03	0,04 0,04	6,00 7,00	-2,20 -2,12	0,25 0,28	6,00 7,00	-2,22 -2,13	0,48 0,52
8,00	-2,03	0,04	8,00	-2,12	0,26	8,00	-2,13	0,32
9,00	-2,08	0,04	9,00	-2,20	0,23	9,00	-2,22	0,48
				CPI				
Se		sem		om	sem	Com		com
const	,	tendência		tante,	tendência	cons		tendênci
Lag	ADF	p-valor	Lag	ADF	p-valor	Lag	ADF	p-valor
0.00	212	0.03	0.00	2.70	0.00	0.00	261	0.30

Se	em	sem	Co	om	sem	Co	om	com
constante,		tendência	constante,		tendência	constante,		tendência
Lag	ADF	p-valor	Lag	ADF	p-valor	Lag	ADF	p-valor
0,00	-2,12	0,03	0,00	-2,70	0,08	0,00	-2,64	0,30
1,00	-2,19	0,03	1,00	-3,29	0,02	1,00	-3,29	0,07
2,00	-2,65	0,01	2,00	-3,79	0,01	2,00	-3,76	0,02
3,00	-2,79	0,01	3,00	-3,97	0,01	3,00	-3,94	0,01
4,00	-2,72	0,01	4,00	-3,94	0,01	4,00	-3,91	0,01
5,00	-2,89	0,01	5,00	-4,21	0,01	5,00	-4,18	0,01
6,00	-2,87	0,01	6,00	-4,31	0,01	6,00	-4,29	0,01

Nota: UST10 é a taxa de retorno do título do tesouro norte-americano com vencimento em dez anos; S&P 500 é a taxa de retorno do índice Standard and Poor's 500; EMBI+ é o indicador de risco-país para o Brasil; e CPI é a taxa de inflação norte-americana calculada com base em doze meses passados.

Fonte: Elaborada pelos autores.

4.3.2 Teste PP

Na Tabela 4, apresentam-se os resultados para o teste PP, que realiza uma correção na estatística de teste para considerar a presença de heteroscedasticidade, característica frequente em séries financeiras. A seleção dos lags para as séries analisadas foi feita por meio do AIC. Para o UST10, só é possível rejeitar a hipótese nula de raiz unitária quando o teste PP é realizado com constante e tendência. Para o S&P500, rejeita-se a hipótese nula de raiz unitária para todos os tipos de testes realizados. Para o EMBI+, rejeita-se a hipótese nula de raiz unitária, com 5% de significância, quando o teste é realizado sem constante e tendência. Por último, para a série do CPI, é possível rejeitar a hipótese nula de raiz unitária, com 5% de significância, para os três tipos de teste.

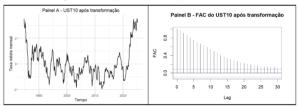
Tabela 4
Teste PP para os componentes tarifários UST10, S&P500, EMBI+ e CPI

	UST10								
Sem constante,		sem tendência	Com constante,		sem tendência	Com constante,		com tendência	
Lag	PP	p-valor	Lag	PP	p-valor	Lag	PP	p-valor	
5,00	-2,54	0,36	5,00	-5,88	0,41	5,00	-38,51	0,01	
				S&P500)				
Sem constante,		sem tendência	Com constante,		sem tendência	Com constante,		com tendência	
Lag	PP	p-valor	Lag	PP	p-valor	Lag	PP	p-valor	
5,00	-28,67	0,01	5,00	-38,61	0,01	5,00	-38,77	0,01	
				EMBI+					
Sem co	nstante,	sem tendência	Com constante,		sem tendência	Com constante,		com tendência	
Lag	PP	p-valor	Lag	PP	p-valor	Lag	PP	p-valor	
10,00	-8,03	0,05	10,00	-10,66	0,14	10,00	-12,24	0,36	
				CPI					
		sem tendência	Com co	onstante,	sem tendência	Com co	nstante,	com tendência	
Lag 6,00	PP -10,57	p-valor 0,02	Lag 6,00	PP -23,18	p-valor 0,01	Lag 6,00	PP -23,07	p-valor 0,04	
Fonte: Elal	onte: Elaborada pelos autores.								

4.3.3 Teste KPSS

De acordo com os resultados apresentados na Tabela 5, as séries do UST10, S&P500, EMBI+ e CPI são estacionárias, uma vez que os p-valores para os três tipos de teste KPSS são maiores ou iguais a 10%: não se rejeita a hipótese nula de estacionariedade. A seleção do número de lags foi feita por meio do AIC.

Teste KPSS para os componentes tarifários UST10, S&P500, EMBI+ e CPI


	•	•						
				UST10)			
Sem constante,		sem tendência	Com constante,		sem tendência	Com constante,		com tendência
Lag	KPSS	p-valor	Lag	KPSS	p-valor	Lag	KPSS	p-valor
4,00	0,14	0,10	4,00	0,16	0,10	4,00	0,03	0,10
				S&P50	0			
Sem constante,		sem tendência	Com constante,		sem tendência	Com constante,		com tendência
Lag	KPSS	p-valor	Lag	KPSS	p-valor	Lag	KPSS	p-valor
4,00	0,98	0,10	4,00	0,04	0,10	4,00	0,04	0,10
				EMBI-	+			
Sem constante,		sem tendência	Com constante,		sem tendência	Com constante,		com tendência
Lag	KPSS	p-valor	Lag	KPSS	p-valor	Lag	KPSS	p-valor
15,00	0,82	0,10	15,00	0,16	0,10	15,00	0,12	0,10
				CPI				
Sem constante,		sem tendência	Com co	nstante,	sem tendência	Com co	nstante,	com tendência
Lag	KPSS	p-valor	Lag	KPSS	p-valor	Lag	KPSS	p-valor
6,00	0,24	0,10	6,00	0,09	0,10	6,00	0,10	0,10

Fonte: Elaborada pelos autores.

4.4 Transformações das séries

Embora os testes ADF, PP e KPSS não tenham confirmado a presença de raiz unitária na série do UST10, ela apresenta uma função de autocorrelação compatível com a de processos não estacionários. Nesse caso, possivelmente, o comportamento não estacionário esteja sendo induzido pela presença de uma tendência determinística, a qual precisa ser estimada e subtraída da série. A equação 6 expressa a tendência estimada para essa série, com os respectivos p-valores dos coeficientes:

Na Figura 3, Painel A, observa-se a série do UST10 após a extração da tendência (doravante denominada série UST10 transformada) e, no Painel B, a sua respectiva função de autocorrelação. Os indícios de não-estacionariedade, detectados pela função de autocorrelação da Figura 2, desapareceram.

Figura 3. Série UST10 transformada e a função de autocorrelação após a extração da tendência determinística Fonte: Elaborada pelos autores

Para o EMBI+, a estatística de teste KPSS permite rejeitar a hipótese nula de raiz unitária; nos testes PP e ADF, rejeita-se a hipótese nula apenas nas versões sem constante e tendência linear. A série apresenta um decaimento ao longo do tempo e estabiliza-se em torno de aproximadamente 200 pontos, logo é possível deduzir a existência de uma tendência exponencial com uma assíntota horizontal. A tendência exponencial estimada para a série do EMBI+ (equação 7) é ilustrada pela Figura 4.

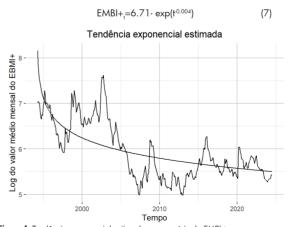
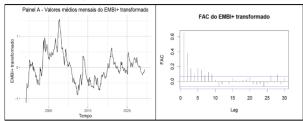



Figura 4. Tendência exponencial estimada para a série do EMBI+ Fonte: Elaborada pelos autores.

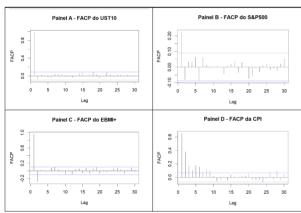

Na Figura 5, observa-se a série do EMBI+ após a extração da tendência exponencial (Painel A); e a função de autocorrelação da série transformada (Painel B).

Figura 5. Série EMBI+ transformada e função de autocorrelação após a extração da tendência Fonte: Elaborada pelos autores.

4.5 Modelos de séries temporais estimados

A função de autocorrelação parcial (PACF), em conjunto com a função de autocorrelação, dá indícios do tipo de modelo ARMA e das ordens de defasagens que devem ser ajustadas para cada uma das séries. Para realizar a escolha dos modelos, utilizou-se o critério AIC. Na Figura 6, são apresentadas as PACFs das séries do UST10 transformada, S&P500, EMBI+ transformada e CPI.

Figura 6. Autocorrelação parcial das series USITU transformada, S&PSUU, EMBI+transformada e CPI Fonte: Elaborada pelos autores.

Os modelos foram estimados dentro de cada CRTP da ANEEL utilizando-se os dados disponibilizados pela ANEEL em seu sítio eletrônico na internet. Para a UST10 transformada, a função de autocorrelação parcial indica que o modelo mais adequado é um AR(2). A escolha da ordem autoregressiva foi feita por meio do critério AIC. As equações de número 8 a 12 representam, respectivamente, os modelos para o UST10 nos CRTPs 1 a 5.

$$UST10Trans_{t} = -1,084UST10Trans_{t-1} - 0,504UST10Trans_{t-2} + \epsilon_{t} + 0,726\epsilon_{t-1}$$
 [8]
$$UST10Trans_{t} = -1,084UST10Trans_{t-1} - 0,504UST10Trans_{t-2} + \epsilon_{t} + 0,726\epsilon_{t-1}$$
 [9]
$$UST10Trans_{t} = -1,008UST10Trans_{t-1} - 0,499UST10Trans_{t-2} + \epsilon_{t} + 0,613\epsilon_{t-1}$$
 [10]
$$UST10Trans_{t} = 1,333UST10Trans_{t-1} - 0,567UST10Trans_{t-2} + \epsilon_{t} + 0,882\epsilon_{t-1}$$
 [11]
$$UST10Trans_{t} = 1,401UST10Trans_{t-1} - 0,606UST10Trans_{t-2} + \epsilon_{t} - 0,888\epsilon_{t-1}$$
 [12]
$$UST10Trans_{t} = 1,401UST10Trans_{t-1} - 0,606UST10Trans_{t-2} + \epsilon_{t} - 0,888\epsilon_{t-1}$$
 [12]
$$UST10Trans_{t} = 1,401UST10Trans_{t-1} - 0,606UST10Trans_{t-2} + \epsilon_{t} - 0,888\epsilon_{t-1}$$
 [12]
$$UST10Trans_{t} = 1,401UST10Trans_{t-1} - 0,606UST10Trans_{t-2} + \epsilon_{t} - 0,888\epsilon_{t-1}$$

autocorrelação parcial indica que o número de lags a ser utilizado é igual a 1. O uso do critério AIC para seleção da ordem de defasagem nos modelos estimados, os quais são representados, respectivamente, pelas equações de número 13 a 17, fez com que fossem produzidos modelos diferentes para cada um dos CRTPs. Atribui-se esse comportamento à variação da janela temporal utilizada pela ANEEL: (i) 1° CRTP, 15/10/1984 a 15/06/2000; (ii) 2° CRTP, 15/03/1995 a 15/06/2006; (iii) 3° CRTP, 15/03/1995 a 15/12/2010; (iv) 4° CRTP, 15/10/1984 a 15/09/2014; e (v) 5° CRTP, 15/10/1987 a 15/09/2017. Nos 1°, 4° e 5° CRTPs, quando a ANEEL utiliza todas as observações disponíveis a partir de 1984 para calcular o componente, os modelos estimados são do tipo ARMA(2,2); e a mudança nos parâmetros se deve ao aumento do número de informações – que melhoraram a estimação. As equações de número 13 a 17 representam, respectivamente, os modelos para o S&P500 nos CRTPs de 1 a 5.

$$S\&P500_{t} = -0.962S\&P500_{t-1} - 0.383S\&P500_{t-2} + \epsilon_{t} + 0.589\epsilon_{t-1} + -0.151\epsilon_{t-2}$$

$$S\&P500_t = -0.347S\&P500_{t-1} + \epsilon_t$$
 (14)

$$S\&P500_t = 0.946922S\&P500_{t-1} + \epsilon_t \tag{15}$$

$$S\&P500_t = 1,333S\&P_{t-1} - 0,567S\&P500_{t-2} + \epsilon_t - 0,882\epsilon_{t-1} + 0,590\epsilon_{t-2}$$
(16)

$$S\&P500_t = 1,401S\&P_{t-1} - 0,606S\&P500_{t-2} + \epsilon_t - 0,888\epsilon_{t-1} + 0,533\epsilon_{t-2}$$
(17)

Pelo teste ADF, não foi possível rejeitar a hipótese nula de raiz unitária para as observações da série do EMBI+ utilizadas nos dois primeiros CRTPs. Sendo assim, tomou-se a primeira diferença dessa série nesses períodos. As equações de número 18 a 22 representam, respectivamente, os modelos para essa série nos CRTPs de 1 a 5.

$$EMBI +_{t} = 0.917EMBI +_{t-1} + \epsilon_{t} \tag{18}$$

$$EMBI +_{t} = 0.347 + 0.944EMBI +_{t-1} + \epsilon_{t}$$
(19)

$$EMBI +_{t} = 0.186 + 0.960EMBI +_{t-1} + \epsilon_{t}$$
(20)

$$EMBI +_{t} = 0.135 + 0.969EMBI +_{t-1} + \epsilon_{t}$$
(21)

$$EMBI +_{t} = 0.132 + 0.969EMBI +_{t-1} + \epsilon_{t}$$
(22)

Para o CPI, observa-se que a PACF apresenta um grande pico no lag 1, seguido por uma onda minimizada que alterna entre correlações positivas e negativas. Esse comportamento é indicativo de um termo de média móvel nos dados.

Os modelos estimados são expressos pelas equações de número 23 a 27 referentes, respectivamente, aos CRTPs 1 a 5. Observa-se uma variação do tipo de modelo estimado, por exemplo, ARMA(2,1) para o 1° CRTP; e ARMA(1,1) para o 2° CRTP. Novamente, ocorreu variação da janela temporal utilizada pela ANEEL.

$$CPI_{t} = 0.003 + 0.377CPI_{t-1} - 0.518CPI_{t-2} + \epsilon_{t} + 0.817\epsilon_{t-1}$$
(23)

$$CPI_t = 0.850CPI_{t-1} + \epsilon_t + 0.507\epsilon_{t-1}$$
(24)

$$CPI_{t} = 0.203CPI_{t-1} - 0.585CPI_{t-2} + \epsilon_{t} + 1.529\epsilon_{t-1} + 0.809\epsilon_{t-2}$$
(25)

$$CPI_{t} = 0.125CPI_{t-1} - 0.596CPI_{t-2} + \epsilon_{t} + 1.379\epsilon_{t-1} + 0.627\epsilon_{t-2}$$
(26)

$$CPI_t = 0.935CPI_{t-1} + \epsilon_t \tag{27}$$

4.6 Comparação do WACC regulatório proposto com o calculado pela ANEEL

Os valores das variáveis UST10, S&P500, EMBI+ e CPI foram estimados por meio dos modelos de séries temporais descritos na seção anterior. Para os demais componentes do WACC regulatório, foram adotados os mesmos valores utilizados pela ANEEL para cada CRTP. Desse modo, foi possível comparar o impacto da mudança de metodologia para estimação das referidas variáveis no custo de capital.

A Tabela 6 apresenta os valores, os propostos neste estudo e os adotados pela ANEEL, para cada componente tarifário e para o WACC regulatório. Para o 1° CRTP, o WACC proposto é consideravelmente maior do que o WACC adotado pela ANEEL, diferença essa ocasionada principalmente pelo maior valor estimado para o EMBI+.

Tabela 6

Comparação dos componentes UST10, S&P500, EMBI+, CPI e do WACC propostos

CRTP	1°CRTP	2°CRTP	3°CRTP	4°CRTP	5°CRTP	Média				
(a) Componente ANEEL	5,09%	4,11%	3,00%	2,08%	1,35%	4,21%				
(b) Componente Proposto	3,68%	3,57%	3,17%	2,09%	2,26%	2,96%				
(a) – (b)	-1,41%	-0,54%	0,17%	0,01%	0,91%	-1,25%				
S&P500										
(a) Componente ANEEL	9,33%	5,86%	21,56%	18,51%	17,21%	12,12%				
(b) Componente Proposto	9,96%	15,11%	18,40%	10,50%	15,02%	13,80%				
(a) – (b)	0,63%	9,25%	-3,16%	-8,01%	-2,19%	1,68%				
			EMBI+							
(a) Componente ANEEL	7,34%	2,83%	1,90%	2,24%	2,65%	3,49%				
(b) Componente Proposto	7,06%	2,77%	1,88%	2,16%	2,57%	4,50%				
(a) – (b)	-0, 2%	-0,06%	-0, 2%	-0,08%	-1,01%	0,08%				
			CPI							
(a) Componente ANEEL	1,82%	4,04%	2,04%	1,74%	2,04%	2,35%				
Componente Proposto	2,00%	1,37%	1,12%	1,59%	2,00%	1,62%				
(a) – (b)	0,18%	-2,67%	-0,92%	-0,15%	-0,04%	-0,73%				
WACC										
(a) Componente ANEEL	11,66%	9,74%	7,94%	8,48%	8,06%	9,18%				
Componente Proposto	12,05%	10,23%	8,94%	6,24%	7,82%	9,05%				
(a) - (b)	0,39%	0,49%	1,00%	-2,25%	-0,24%	-0,12%				

Fonte: Elaborada pelos autores.

No 2° CRTP, o WACC proposto foi similar ao WACC da ANEEL, apesar das diferenças dos componentes recalculados neste estudo. Para o 3° CRTP, o maior valor estimado para o S&P500 aumentou o WACC proposto em 0,97% em relação ao WACC da ANEEL. Para o 4° e 5° CRTPs, o WACC proposto foi inferior ao WACC da ANEEL em decorrência dos menores valores estimados para o componente UST10.

Observou-se, em geral, que os modelos de séries temporais estimados resultaram em valores diferentes daqueles calculados pela ANEEL nos CRTPs. A adoção dos modelos do tipo ARMA para a projeção do UST10 gerou valores menores no 1° e 2° CRTPs; e maiores no 3°, 4° e 5° CRTPs. A diferença média foi de -1,25%. Dessa forma, implicaria uma redução do WACC regulatório no 1° e 2° CRTPs; e uma elevação no 3°, 4° e 5° CRTPs. Considerando a média, haveria uma redução no conjunto dos valores de WACC.

Para a série do S&P500, as diferenças entre os valores obtidos pelos modelos ARMA e os calculados pela ANEEL apresentaram uma variabilidade significativa: no 1° CRTP, o valor previsto ficou 0,63% acima do calculado pela ANEEL; no 2° CRTP, o valor previsto ficou 9,25 pontos percentuais acima do calculado pela ANEEL; nos CRTPs seguintes, os valores propostos ficaram abaixo dos calculados pela ANEEL: 3° CRTP, -3,16%; 4° CRTP, -8,01%; e 5° CRTP, -2,19.

Para a série do EMBI+, os valores estimados pelo modelo ARMA foram: 7,06; 2,76; 1,88; 2,17; e 2,57, respectivamente, para o 1°, 2°, 3°, 4° e 5° CRTPs. Os valores ficaram muito próximos daqueles apresentados pela ANEEL. A maior diferença foi no 5° CRTP: o EMBI+ proposto ficou 1% maior que o valor calculado pela ANEEL.

Os valores estimados pelos modelos ARMA para a série do CPI do 1º ao 5º CRTPs foram, respectivamente, 2%; 1,37%; 1,12%; 1,59%; e 2%. A maior diferença ocorreu no 2º CRTP, em que o valor do CPI proposto ficou 2,67% abaixo do calculado pela ANEEL. O valor médio previsto (média nos 5 CRTPs) pelo modelo ARMA foi 1,62%, enquanto a média dos valores calculados pela ANEEL foi 2,35%.

A diferença entre os valores dos componentes estimados neste estudo em relação aos adotados pela ANEEL produziu resultados diferentes para o WACC regulatório. Para o 1° CRTP, o WACC proposto (12,05%) é muito próximo daquele considerado pela ANEEL (11,66%). Para o 2° CRTP, o WACC proposto (10,23%) também foi similar ao WACC da ANEEL (9,74%), apesar das diferenças dos componentes recalculados neste estudo. Para o 3° CRTP, o maior valor estimado para o S&P500 aumentou o

WACC proposto (8,94%) em 1% em relação ao WACC da ANEEL (7,94%). Para o 4° e 5° CRTPs, os valores de WACC propostos foram menores como consequência de menores valores estimados para o S&P500. Essas evidências corroboram as hipóteses de que o WACC regulatório do setor elétrico de países latino-americanos possa estar sendo superestimado, como nos estudos de Bueno et al. (2022), Bedoya-Cadavid et al. (2023) e Aguilar et al. (2024).

Todavia, no total, apesar das diferenças verificadas entre o WACC proposto e o WACC da ANEEL, a média do WACC para os cinco CRTPs indica um valor menor em apenas 0,12%. A média do WACC proposto foi de 9,05%, enquanto a média do WACC da ANEEL foi de 9,18%.

5 Considerações Finais

O foco neste estudo consistiu em propor que a estimação dos componentes tarifários com séries temporais longas utilizados no cálculo do WACC regulatório das distribuidoras brasileiras de energia elétrica seja feita mediante modelos de séries temporais, em vez da média aritmética simples e mediana adotadas pela ANEEL nos cinco primeiros CRTPs.

O papel da ANEEL é buscar o equilíbrio e eficiência na infraestrutura do sistema elétrico brasileiro. Por um lado, estimar o WACC regulatório acima da taxa adequada para remunerar o risco desse tipo de negócio implicaria uma transferência de riqueza dos consumidores para os investidores. Por outro lado, estimar o custo de capital abaixo da taxa de retorno coerente com o risco implicaria extrair ganhos econômicos dos investidores. Tal fato emitiria um sinal negativo ao mercado, afastando o fluxo de capitais para esses ativos e diminuindo, no longo prazo, a oferta de recursos para investimento em expansão e melhoria das redes de distribuição. Portanto, a adequada estimação do WACC regulatório traz consequências importantes para o mercado e para a sociedade.

Dos sete componentes com séries temporais longas utilizados no cálculo do WACC regulatório nos cinco primeiros CRTPs, foram considerados neste estudo quatro: UST10, S&P500, EMBI+ e CPI. Como os prêmios de risco regulatório e cambial não foram incluídos pela ANEEL nos cálculos do WACC regulatório a partir do 3° CRTP, não se aplicou a esses componentes a metodologia aqui proposta. O risco sistêmico, representado pelo beta, também não pode ser obtido a partir do método proposto porque o grupo de companhias norte-americanas utilizado como referência para seu cálculo foi alterado pela ANEEL a cada CRTP.

O método proposto abrangeu cinco etapas, que consistiram em: testar a estacionariedade das séries; transformar em estacionárias as séries com comportamento não estacionário; projetar os componentes tarifários por meio de modelos de séries temporais; calcular o WACC das distribuidoras brasileiras de energia elétrica a partir desses componentes estimados por séries temporais; e comparar o WACC regulatório proposto com o da ANEEL.

Observou-se, em geral, que os modelos de séries temporais estimados resultaram em valores diferentes daqueles calculados pela ANEEL para os componentes tarifários nos cinco primeiros CRTPs. Com isso, verificouse uma redução do WACC regulatório no 1° e 2° CRTPs e uma elevação no 3°, 4° e 5° CRTPs. Em média, os valores de WACC obtidos pelo método aqui proposto são menores do que os da ANEEL. Todavia, embora haja diferenças entre o WACC proposto e o WACC da ANEEL, a média para os cinco CRTPs aponta para um valor bastante próximo.

A partir dos resultados deste estudo, uma recomendação importante para o cálculo do WACC é que sempre sejam utilizados todos os valores observados para cada uma das séries. Os parâmetros dos modelos ARMA e mesmo o estimador da média tendem para o seu verdadeiro valor com o crescimento da amostra. A mudança da janela temporal pode gerar viés nas estimações e, portanto, aumentar a incerteza subjacente às expectativas dos agentes do mercado envolvidos em relação ao WACC que poderá ser adotado pela ANEEL.

Como continuidade desta proposta, propõem-se dois caminhos metodológicos, que são o aprofundamento das pesquisas para a utilização dos modelos de séries temporais como alternativa para a projeção das séries temporais longas que integram o WACC regulatório e a consideração de outros modelos para o cálculo do custo do capital próprio.

Referências

Agência Nacional de Energia Elétrica. (2024). Regulação econômica do segmento de distribuição - Nota técnica nº 55/2024 - SRE/ANEEL, de 16 de abril de 2024. Brasília, ANEEL. Disponível em: https://www2.aneel.gov.br/cedoc/ndsp20241296.pdf

Agência Nacional de Energia Elétrica. (2020). Regulação econômica do segmento de distribuição - Nota técnica n° 30/2020 - SRE/ANEEL, de 09 de março de 2020. Brasília, ANEEL. Disponível em: https://www2.aneel.gov.br/cedoc/ndsp2023452.pdf

Agência Nacional de Energia Elétrica. (2018). Regulação econômica do segmento de distribuição - Análise de Impacto Regulatório nº 3/2018-SRM/ANEEL - Anexo da Nota Técnica nº 132/2018 -SRM/ANEEL, de 16 de agosto de 2018. Brasília, ANEEL. Disponível em: https://www2.aneel.gov.br/cedoc/air2018003srm.pdf

Agência Nacional de Energia Elétrica. Resolução Normativa

ANEEL n° 1.003, de 1° de fevereiro de 2022. Disponível em: https://www2.aneel.gov.br/cedoc/ren20221003.pdf

Aguilar, V., Naula, F., & Cabrera, F. (2024). Cost of capital in the energy sector, in emerging markets, the case of a dollarized economy. Energies, 17(19), 4782. https://doi.org/10.3390/en17194782

Andrade, M. E. M. C., & Martins, E. (2017). Desafios na política pública de mensuração dos ativos para a formação das tarifas no setor elétrico: alguém deve ser beneficiado e alguém deve ser sacrificado? Revista Contabilidade & Finanças, 28(75), 344-360. https://doi.org/10.1590/1808-057x201703160

Assaf Neto, A., Lima, F. G., & Araújo, A. M. P. d. (2008). Uma proposta metodológica para o cálculo do custo de capital no Brasil. Revista de Administração-RAUSP, 43(1), 72-83. https://www.revistas.usp.br/rausp/article/view/44468/48088

Bedoya-Cadavid, J.A., Lanzas-Duque, Á.M., & Salazar, H. (2023). WACC for electric power transmission system operators: the case of Colombia. Energies, 16(2), 964. https://doi.org/10.3390/en16020964

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Bower, D. H., Bower, R. S., & Logue, D. E. (1984). Arbitrage pricing theory and utility stock returns. The Journal of Finance, 39(4), 1041-1054. https://doi.org/10.1111/j.1540-6261.1984.tb03891.x

Bueno, E. F., Albuquerque, A. A., & Carvalho, F. L. (2022). Custo de capital estimado pela ANEEL e segundo a teoria financeira para o setor de distribuição de energia elétrica: uma análise comparativa. Revista Universo Contábil, 18(e2022114), 1-20. https://doi.org/10.4270/ruc.2022114

Camacho, F. T. (2004). Custo de capital de indústrias reguladas no Brasil. Revista do BNDES, Rio de Janeiro, 11(21), 139-64. http://web.bndes.gov.br/bib/jspui/handle/1408/11879

Camacho, F., Rocha, K. & Fiuza, G. (2006). Custo de Capital de Distribuição de Energia Elétrica – Revisão Tarifária 2007-2009. Revista do BNDES, 13(25), 231-268. http://web.bndes.gov.br/bib/jspui/handle/1408/10954

Camacho, F. T., & Menezes, F. M. (2010). Price Regulation and the Cost of Capital. Discussion Papers Series 413. School of Economics, University of Queensland.

Carvalhaes, M. V., Albuquerque, A. A., & Silva, D. M.

(2014). Comparação de duas metodologias de apuração do custo de capital das distribuidoras de energia elétrica brasileiras. Revista Contabilidade e Controladoria, 6(2), 106-127. https://doi.org/10.5380/rcc.v6i2.35154

Coutinho, P., & Oliveira, A. (2002). Determinação da taxa de retorno adequada para concessionárias de distribuição de energia elétrica no Brasil. Relatório Final, FUBRA.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.1080/01621459.1979.104 82531

Gordon, M. J., & Shapiro, E. (1956). Capital equipment analysis: the required rate of profit. Management Science, 3(1), 102-110. https://doi.org/10.1287/mnsc.3.1.102

Greene, W. H. (2003). Econometric Analysis (5th ed) New Jersey: Prentice Hall

Gujarati, D. N., & Porter, D. C. (2011). Econometria Básica. Amgh Editora.

Hamada, R. S. (1972). The effect of the firm's capital structure on the systematic risk of common stocks. The Journal of Finance, 27(2), 435-452. https://doi.org/10.1111/j.1540-6261.1972.tb00971.x

Hamilton, J. D. (1994). Time series econometrics. Princeton: Princeton U. Press.

Haug, T., & Wieshammer, L. (2019). Cost of equity for regulated networks: Recent developments in continental Europe. The Electricity Journal, 32(3), 1-3. https://doi.org/10.1016/j.tej.2019.02.001

Kayo, E. K., Martelanc, R., Brunaldi, E. O., & Silva, W. E. (2020). Capital asset pricing model, beta stability, and the pricing puzzle of electricity transmission in Brazil. Energy Policy, 142, 111485. https://doi.org/10.1016/j.enpol.2020.111485

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y

Lanziotti, T. M., & Garcia, R. L. (2018). Custo de capital das concessionárias de transmissão de energia elétrica no Brasil: um estudo da Companhia Estadual de Geração e Transmissão de Energia Elétrica-CEEE-GT. Revista Eletrônica Científica da UERGS, 4(2), 320-339. https://doi.org/10.21674/2448-0479.42.320-339

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13-37. https://doi.org/10.2307/1924119

Littlechild, S. C. (1983). Regulation of **British** Telecommunications' profitability: report to the Secretary of State, February 1983. Department of Industry.

Markowitz, Η. (1952).Portfolio selection. The of Finance, 7(1),77-91. https://doi. org/10.1111/j.1540-6261.1952.tb01525.x

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the Econometric Society, 34(4) 768-783. https://doi.org/10.2307/1910098

Pereiro, L. E. (2002). Valuation of companies in emerging markets: A practical approach. John Wiley & Sons.

Perroni, A. L. F. (2016). Análise crítica do custo do capital das distribuidoras de energia elétrica no Brasil (Dissertação, Fundação Getúlio Vargas). https://hdl. handle.net/10438/17609

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. https:// doi.org/10.1093/biomet/75.2.335

Rocha, K., Camacho, F., & Fiuza, G. (2006). Custo de capital das concessionárias de distribuição de energia elétrica no processo de revisão tarifária: 2007-2009. Instituto de Pesquisa Econômica Aplicada, Texto para Discussão, nº 1174, 2006. Disponível em:http://www.ipea.gov.br/>. Acesso em: 03 de outubro, 2020.

returns: A puzzle. Energy Policy 133, 110891.. https://doi. org/10.1016/j.enpol.2019.110891

Roll, R., & Ross, S. (1983). Regulation, the capital asset pricing model, and the arbitrage pricing model. Public Utilities Fortnightly, 111(26), 22-28.

Ross, S. A. (1976). The arbitrage theory of capital asset Pricing. Journal of Economic Theory, 13 (3), 341-360. https://doi.org/10.1016/0022-0531(76)90046-6

Ross, S. A., Westerfield, R. W., Jordan, B. D., & Lamb, R. (2013). Fundamentos de administração financeira. Porto Alegre: AMGH Editora.

Savoia, L. R. F., Securato, J. R., Bergmann, D. R., & Silva, F. L. (2019). Comparing results of the implied cost of capital and capital asset pricing models for infrastructure firms in Brazil. Utilities Policy, 56, 149-158. https://doi. org/10.1016/j.jup.2018.12.004

Sensoy, A., Ozturk, K., Hacihasanoglu, E., & Tabak, B. M. (2017). Not all emerging markets are the same: A classification approach with correlation based networks. Journal of Financial Stability, 33, 163-186. https://doi. org/10.1016/j.jfs.2016.06.009

Simões, J. J. F., Ahn, H., & Souza, A. A. (2021). The challenge of determining the WACC of electricity transmission service operators: the Brazilian case. Journal of Accounting, Management and Governance, https://doi.org/10.51341/1984-24(2), 222-238. 3925 2021v24n2a5

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), Rode, D. C., & Fischbeck, P. S. (2019). Regulated equity 425-442.https://doi.org/10.1111/j.1540-6261.1964.tb02865.x